13807030193
应用技术

应用技术

联系我们
联系人:朱先生
手机号码:13807030193
公司地址:江西省南昌市青山湖区罗家集前湖徐村1号厂房

镁剂脱硫废水中硫酸根离子去除方法

发布时间:2020-01-19 浏览次数:0

随着工业的发展和能源消耗的加剧,热电厂广泛应用湿式氧化镁法烟气脱硫工艺,由此产生了大量镁剂烟气脱硫废水(SO42-质量浓度可达6 g/L),该废水若不经处理直接排放,将产生具有恶臭味和腐蚀性的H2S气体,严重危害人体和水体平衡 〔1〕。目前,去除水体中SO42-的方法主要有生物法和物化法。生物法存在启动时间较长,处理速度慢,效率低,有机物消耗量大等问题〔2〕。物化法(如化学沉淀法)主要是通过生成硫酸钙和硫酸钡去除SO42-,其中,硫酸钙法因产生的硫酸钙溶度积较高,处理效果差;而硫酸钡法则需投加钡盐,成本较高。因此,亟需开发一种快速、经济、有效地去除水体中SO42-的方法〔3, 4〕。

钙矾石〔简称AFt,分子式为Ca6Al2(SO4)3(OH)12·26H2O或3CaO·Al2O3·3CaSO4·32H2O〕是水泥受硫酸盐侵蚀,在水化硬化过程中Al3+、Ca2+和SO42-相结合形成的不溶性针状晶体。该晶体在94~400 ℃之间失去结晶水而处于无定形状态,吸水后可迅速恢复原来的晶体结构,体积膨胀,可以做混凝土膨胀剂〔5, 6〕,是混凝土的重要研究项目之一〔7, 8〕。采用钙矾石沉淀法处理硫酸盐废水,不仅能快速、经济、有效地去除SO42-,而且Ca2+、Al3+残留量很低,无二次污染,生成的沉淀钙矾石可以做混凝土膨胀剂。王海鹰等〔9〕采用铝/钙复盐法脱除工业废水中的SO42-,沉淀物为钙矾石。研究表明,当反应温度为25 ℃,反应时间为1 h,溶液 pH 为11.0,n(SO42-)∶n(Al3+)为 1.1时,废水中的SO42-可由1 720 mg/L 降至100 mg/L 以下;各因素对处理效果的影响由大至小依次为溶液 pH>铝盐加入量>反应时间。

本研究尝试采用钙矾石沉淀法处理镁剂烟气脱硫废水中的硫酸盐,探讨了pH、铝盐投加量、反应时间、搅拌速度、废水初始浓度等因素对SO42-去除率的影响,及pH对Ca2+、Al3+残留量的影响。

1 实验部分

1.1 实验材料

镁剂烟气脱硫废水取自某公司热电厂;Na2SO4、CaO、AlCl3,均为分析纯,购自广东西陇化工股份有限公司。

1.2 实验方法

通过ICP测定镁剂烟气脱硫废水中的离子组成及含量,先对废水进行共沉淀预处理,再对预处理后废水采用钙矾石沉淀法进行处理。钙矾石沉淀法实验步骤:取100 mL硫酸盐废水置于250 mL锥形瓶中,加入适量AlCl3,用CaO调节体系pH,恒温反应时间。反应结束后,用45 μm中性滤纸过滤出沉淀物,并分析滤液中SO42-含量,计算SO42-去除率。

1.3 分析方法

(1)电镜扫描与元素组成分析。采用扫描电子显微镜-能谱仪(SEM-EDS)进行沉淀产物形貌及元素组成分析。SEM:JSM-5600LV(JEOL,日本),二子探测器,背电子探测器,电压20 kV,放大倍数为12 000倍;EDS:IE 300 X(Oxford,英国),Si(Li)薄窗,X射线探测器,全数字化脉冲处理器,Mn的Kα处的分辨率优于132 eV,可测元素范围4Be~92U。

(2)金属离子浓度分析。采用PE ICP-OES Opti-ma 2100(铂金埃尔默公司,)检测滤液中金属离子浓度。ICP-OES 工作参数:等离子气流量1.5L/min,辅助气流量0.2 L/min,雾化器流量0.80 L/min,径向观察高度15 mm,积分时间3 s(取3次测量平均值),射频功率 1 300 W。

(3)SO42-浓度分析。依据HJ/T342-2007,用铬酸钡分光光度法(紫外-可见分光光度计,ZUV-8000S)分析SO42-浓度。

2 结果与讨论

2.1 钙矾石的制备与表征

在条件下,Al3+、Ca2+和SO42-结合可形成不溶性钙矾石沉淀,反应遵循以下反应式:



将pH=11,n(Al3+)∶n(SO42-)=0.575条件下得到的沉淀物分别用扫描电子显微镜(SEM)和X射线能谱仪(EDS)进行表征,结果分别如图 1、表 1所示。


图 1 沉淀产物SEM

从图 1可以看出,沉淀物为针状钙矾石晶体〔10〕,直径约为100~300 nm,长度约为1~5μm.钙矾石晶体结构匀称,交错堆积在一起,结构疏松。

由表 1可知,n(Ca)∶n(Al)∶n(S)∶n(O)=6.17∶2∶ 2.98∶28.84,与钙矾石〔Ca6Al2(SO4)3(OH)12·26H2O〕中n(Ca)∶n(Al)∶n(S)∶n(O)=6∶2∶3∶50基本相符。其中,O元素含量的偏差较大,这与产物含水量有关;此外,元素分析中出现的少量C为CaCO3杂质干扰。

2.2 镁剂脱硫废水分析及预处理

镁剂烟气脱硫废水中主要含有高浓度的SO42-和Mg2+,以及少量Ca2+.经分析实验用镁剂烟气脱硫废水水质:SO42- 6 029 mg/L,Mg2+ 1 328 mg/L,Ca2+ 384 mg/L.

在水质分析基础上,对镁剂烟气脱硫废水进行预处理。预处理方法:于镁剂烟气脱硫废水中加入CaO,调节废水pH为12,并在转速300 r/min下反应约30 min,生成CaSO4(ksp=4.93×10-5)和Mg(OH)2 (ksp=1.2×10-11)共沉淀。反应式:

 


镁剂烟气脱硫废水经预处理后,其SO42-降至 2 086 mg/L,SO42-去除率达到65.40%.后续实验均采用预处理后的镁剂烟气脱硫废水作为研究对象,考察各因素对钙矾石沉淀法处理镁剂烟气脱硫废水效果的影响。

2.3 pH对SO42-去除率以及Ca2+、Al3+残留量的影响

研究表明,pH是形成〔Al(OH)6〕3-八面体的关键因素,且对Ca2+、Al3+残留量的影响很大。在AlCl3投加量为0.2 g,搅拌速度为300 r/min,反应时间为30 min的条件下,考察了pH对SO42-去除率以及Ca2+、Al3+残留量的影响,结果如图 2所示。

 图 2 pH对SO42-去除率及Ca2+、Al3+残留量的影响

实验结果表明,当pH≤10.0时,SO42-去除率较低,主要沉淀物为CaSO4;随着pH的进一步升高,〔Al( OH)6〕3-八面体逐渐生成,并结合Ca2+和SO42-形成钙矾石沉淀,SO42-去除率升高;当pH>11.0时,SO42-去除率的变化不大。

随着pH由9.0升高到11.0,废水中Ca2+、Al3+残留质量浓度分别由757、91 mg/L下降到220 、6.1 mg/L,Ca2+、Al3+残留量下降至低点;当pH>11.0时,Al3+残留量变化不大,但Ca2+残留量因过量加入的CaO而迅速增大。因此,在pH=11.0时,钙矾石沉淀法对废水中Ca2+、Al3+和SO42-的去除效果较好。

2.4 铝盐投加量对SO42-去除率的影响

钙矾石是由〔Al(OH)6〕3-八面体、铝氧八面体与钙多面体交替排列形成钙铝多面柱和SO42-进入柱间沟槽等过程串联形成。研究表明,〔Al(OH)6〕3-八面体的反应速率慢,为钙矾石形成的控制步骤,而液相中的Al3+是钙矾石形成速率的决定因素〔11〕。因此,铝盐投加量对钙矾石沉淀法去除SO42-具有很大影响。在pH=11.0,搅拌速度为300 r/min,反应时间为30 min的条件下,考察了铝盐投加量对SO42-去除率的影响,结果如图 3所示。

 图 3 铝盐投加量对SO42-去除率的影响

由图 3可知,当n(Al3+)∶n(SO42-)<0.65时,随着铝盐投加量的增加,SO42-去除率显着增大;当 n(Al3+)∶n(SO42-)=0.575时,SO42-去除率已达到90%以上。从工程实际成本考虑,铝盐投加量不宜过量太多,以n(Al3+)∶n(SO42-)=0.575为佳。

2.5 沉淀反应时间对SO42-去除率的影响

在n(Al3+)∶n(SO42-)=0.575,pH=11.0,搅拌速度为300 r/min的条件下,考察了反应时间对SO42-去除率的影响,结果如图 4所示。

 图 4 反应时间对SO42-去除率的影响

实验结果表明,钙矾石沉淀反应迅速,反应时间为4 min时,SO42-去除率已经达到79%;随着反应时间的进一步延长,SO42-去除率增加缓慢。当反应时间为10 min时,SO42-去除率已经达到92.1%,此时Ca2+、Al3+残留质量浓度分别为187 、4 mg/L.

2.6 搅拌速度对SO42-去除率的影响

在n(Al3+)∶n(SO42-)=0.575,pH=11.0,反应时间为10 min的条件下,考察了搅拌速度对SO42-去除率的影响,结果如图 5所示。

 图 5 搅拌速度对SO42-去除率的影响

由图 5可知,搅拌速度对SO42-去除率有较为明显的影响。搅拌速度偏高(600 r/min)或者偏低(100 r/min)都会使SO42-去除率下降,这是因为搅拌速度过高会破坏钙矾石的结晶,而搅拌速度太慢又会影响溶液的传质过程,不利于阴阳离子及时结合。搅拌速度应控制在300 r/min。

2.7 SO42-初始浓度对SO42-去除率的影响

在n(Al3+)∶n(SO42-)=0.575,pH=11.0,反应时间为10 min,转速为300 r/min的条件下,考察了SO42-初始浓度对SO42-去除率的影响,结果如图 6所示。

 图 6 SO42-初始浓度对SO42-去除率的影响

由图 6可知,随着SO42-初始浓度的增加,SO42-去除率增大。当SO42-初始质量浓度由500 mg/L 增至5 000 mg/L时,SO42-去除率由82.6%上升至96.0%,但同时出水中剩余SO42-质量浓度由87 mg/L上升至191 mg/L.实验结果表明,钙矾石沉淀法对于初始SO42-质量浓度为2 500~5 000 mg/L的废水具有较好的处理效果。但从废水达标排放的角度考虑,还是需要在较低的SO42-浓度下处理废水,即废水的预处理是的。

3 结论

(1)以钙矾石沉淀法处理经过预处理的镁剂脱硫废水,当SO42-初始质量浓度为2 086 mg/L,n(Al3+)∶n(SO42-)=0.575,pH=11.0,反应时间为10 min,转速为300 r/min时,SO42-去除率可达到92.1%,Ca2+、Al3+残留质量浓度分别为187、4 mg/L。

(2)钙矾石沉淀法具有反应时间短、操作简单、适用范围广、去除效果好等优点,处理后水中Ca2+、Al3+残留量很低,无二次污染,是一种快速、经济、有效的去除SO42-的方法,且生成的沉淀钙矾石可以做混凝土膨胀剂。钙矾石沉淀法在硫酸盐废水处理领域具有很好的应用前景。


      布袋除尘器这种仪器越是复杂,要求就越高,一步出错,就有可能导致仪器出故障,严重的还会爆炸,为此,我给大家说说如何防爆?  1、粉尘爆炸的特点⑴粉尘爆炸要比可燃物质及可燃气体复杂一般地,可燃粉尘悬浮于空气中形成在爆炸浓度范围内的粉尘云,在点火源作用下,与点火源接触的部分粉尘首先被点燃并形成一个小火球。在这个小火球燃烧放出的热量作用下,使得周围临近粉尘被加热、温度升高、着火燃烧现象产生,这样火球就将迅速扩大而形成粉尘爆炸。  ⑵粉尘爆炸发生之后,往往会产生二次爆炸这是由于在次爆炸时,有不少粉尘沉积在一起,其浓度过了粉尘爆炸的上限浓度值而不能爆炸。但是,当次爆炸形成的冲击波或气浪将沉积粉尘重新扬起时,在空中与空气混合,浓度在粉尘爆炸范围内,就可能紧接着产生二次爆炸。次爆炸所造成的灾害往往比次爆炸要严重得多。  ⑶粉尘爆炸的机理可燃粉尘在空气中燃烧时会释放出能量,井产生大量气体,而释放出能量的快慢即燃烧速度的大小与粉体暴露在空气中的面积有关。因此,对于同一种固体物质的粉体,其粒度越小,比表面积则越大,燃烧扩散就越快。如果这种固体的粒度很细。以至可悬浮起来,一旦有点火源使之引燃,则可在短的时间内释放出大量的能量。这些能量来不及散逸到周围环境中去,致使该空间内气体受到加热并绝热膨胀,而另一方面粉体燃烧时产生大量的气体,会使体系形成局部高压,以致产生爆炸及传播,这就是通常称作的粉尘爆炸。  ⑷粉尘爆炸与燃烧的区别大块的固体可燃物的燃烧是以近于平行层向内部推进,例如煤的燃烧等。这种燃烧能量的释放比较缓慢。所产生的热量和气体可以迅速逸散。可燃性粉尘的堆状燃烧,在通风良好的情况下形成明火燃烧,而在通风不好的情况下。可形成无烟或焰的隐燃。  ⑸可燃粉尘分类粉体按其可燃性可划分为两类:一类为可燃;一类为非可燃。可燃粉体的分类方法和标准在不同的有所不同。  2、粉尘浓度和颗粒对爆炸的影响⑴粉尘浓度可燃粉尘爆炸也存在粉尘浓度的上下限。该值受点火能量、氧浓度、粉体粒度、粉体品种、水分等多种因素的影响。采用简化公式,可估算出爆炸限,一般而言粉尘爆炸下限浓度为20~60g/m3,上限介于2~6kg/m3。上限受到多种因素的影响,其值不如下限易确定,通常也不易达到上限的浓度。所以,下限值重要、有用。  ⑵粉体粒度可燃物粉体颗粒大于400um时,所形成的粉尘云不再具有可爆性。但对于细粉体当其粒度在10um以下时则具有较大的危险性。应引起注意的是,有时即使粉体的平均粒度大于400um,但其中往往也含有较细的粉体,这少部分的粉体也具备爆炸性。  3、粉尘爆炸的技术措施。燃烧反应需要有可燃物质和氧气,还需要有能量的点火源。对于粉尘爆炸来说应具备三个要素:点火源;可燃细粉尘;粉尘悬浮于空气中,形成在爆炸浓度范围内的粉尘云。这三个要素同时存在才会发生爆炸。因此,只要消除其中一条件即可防止爆炸的发生。在袋式除尘器中常采用以下技术措施。  ⑴防爆的结构设计措施本体结构的设计中,为防止除尘器内部构件可燃粉尘的积灰,所有梁、分隔板等应设置防尘板,而防尘板斜度应小于70度。灰斗的溜角大于70度,为防止因两斗壁间夹角太小而积灰,两相邻侧板应焊上溜料板,消除粉尘的沉积,考虑到由于操作不正常和粉尘湿度大时出现灰斗结露堵寒,设计灰斗时,在灰斗壁板上对高温除尘器增加蒸汽管保温或管状电加热器。为防止灰斗蓬料,每个灰斗还需设置仓臂振动器或空气炮。  ⑵采用滤袋在除尘器内部,由于高浓度粉尘随在流动过程中互相摩擦,粉尘与滤布也有相互摩擦都能产生静电,静电的积集会产生火花而引起燃烧。对于脉冲清灰方式,滤袋用涤纶针刺毡,为消除涤纶针刺毡易产生静电不足,滤袋布料中中纺入导电的金属丝或碳纤维,在安装滤袋时,滤袋通过钢骨架和多孔板相连,经过壳体连入车间接地网。对于反吹风清灰的滤袋,已开发出MP922等多种产品。使用效果都很好。  ⑶设置孔(阀)为将爆炸局限于袋式除尘器内部而不向其他方面扩展,设置孔和的消火设备,实为重要。设置孔的目的不是让孔防止发生爆炸,而是用它限制爆炸范围和减少爆炸次数。大多数处理爆炸性粉尘的除尘器都是在设置孔条件下进行运转的。正因为这样,孔的设计应万一出现爆炸事故,能切实起到作用;平时要加强对孔的维护管理。  ①防爆板防爆板是由压力差驱动、非自动关闭的紧急泄压装置,主要用于管道或除尘设备,使它们避免因压或真空而导致破坏。与阀相比,爆破片具有泄放面积大、动作灵敏、精度高、耐腐蚀和不容易堵塞等优点。爆破片可单独使用,也可与阀组合使用。  ②防爆阀设计防爆阀设计主要有两种:一种是防爆板;另一种是重锤式防爆阀。前一种破裂后需换新的板,生产要中断,遇高负压时,易坯且不易保温。后一种较前一种一些,在关闭状态靠重锤压,严密性差。上述两种方法都不宜采用高压脉冲清灰。为解决严密性问题,在重锤式肪爆阀上可设计防爆锁。其特点是:在关闭时,门的锁合主要是通过此锁,在遇爆炸时可自动打开进行释放,其释放力(力)又可通过弹簧来调整。为了使门受力均衡,一般根据门面积需设置4~6个锁不等。为使防爆门严密不漏风可设计成防爆板与锁的双重结构。  ⑷检测和消防措施为防范于未然,在除尘系统上可采取的消防措施。  ①消防设施。主要有水、CO2和惰性灭火剂。对于水泥厂主要采甩、CO2,而钢厂可采用氮气。  ②温度的检测。为了解除尘器温度的变化情况,控制着火点,一般在除尘器入口处,灰斗上分别装上若干温度计。  ③CO的检测。对于大型除尘设备因体积较大,温度计的装设是很有限的,有时在温度计测点较远处发生燃烧现象难于从温度计上反映出来。可在除尘器出口处装设一台CO检测装置,以帮助检测,只要除尘器内任何地方发生燃烧现象,烟气中的CO便会升高,此时把CO浓度升高的报警与除尘系统控制联销,以便及时停止系统除尘器的运行。  ⑸设备接地措施防爆除尘器因运行需要常常露天布置。甚至露天布置在高大的钢结构上,根据设备接地要求,设备接地避雷成为一项的措施,但是除尘器一般不设避雷针。  ⑹配套部件防爆在除尘器防爆措施中选择防爆部件是的。防爆除尘器忌讳运行工况中的粉尘窜入电气负载内诱发诱导产生爆炸危险。除尘器运行时电气负载、元件在电流传输接触时,甚至导通中也难免产生电击火化,放电火花诱导过限浓度的尘源气体爆炸也是易发生的事,电气负载元件全部选用防爆型部件,爆炸诱导因素产生。设备运行和操作。例如,脉冲除尘器的脉冲阀、提升阀用的电磁阀都应当用防爆产品。  ⑺防止火星混入措施在处理木屑锅炉、稻壳锅炉、铝炉和冶炼炉等废气的袋式除尘器中,炉子中的已燃粉尘有可能随风管气流进入箱体,而使堆积在滤布上的粉尘着火,造成事故。  为防止火星进入袋式除尘器,应采取如下措施①设置预除尘器和冷却管道。图为设有旋风除尘器或惰性除尘器作为预除尘器,以捕集粗粒粉尘和火星。用这种方法太细的微粒火星不易捕集,多数情况下微粒粉尘在进入除尘器之前能够燃尽。在预除尘器之后设置冷却管道,并控制管内流速,使之尽量低。这是一种比较可靠的技术措施,它可使气体在管内有充分的停留时间。  ②冷却喷雾塔。预先直接用水喷雾的气体冷却法。为袋式除尘器内的含尘气体防火,冷却用水量是控制供给的。大部分燃烧着的粉尘一经与微细水滴接触即可冷却,但是水滴却易气化,为使尚未与水滴接触的燃烧粉尘能够冷却,应有的空间和停留时间。  在情况下,采用喷雾塔、冷却管和预除尘器等联合并用,比较地防止火星混入。  ③火星捕集装置见图。在管道上安装火星捕集装置是一种简便可行的方法。还有的在火星通过捕集器的瞬间,可使其发出电气信号,进行报警。同时,停止操作或改变气体回路等。  ⑻控制入口粉尘浓度和加入不燃性粉料袋式除尘器在运转过程中,其内部浓度分布不可避免地会使某部位处于爆炸界限之内,为了提高性,避开管道内的粉尘爆炸上下限之间的浓度。例如,对于气力输送和粉碎分级等粉尘收集工作中,从设计时就要注意到,使之在过上限的高浓度下进行运转;在局部收集等情况下,则要在管路中保持粉尘浓度在下限以下的低浓度。  关于上面所说的,有关怎样防止布袋除尘器爆炸的相关知识就介绍到这里,如果还有其他疑问,可以到本公司的网站进行有关询问。 车间除尘 车间除尘 锅炉除尘 锅炉除尘 脱硝设备 锅炉除尘 车间除尘 脱硝设备 车间除尘 脱硫设备